
Supplementary Figure 1
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Supplementary Figure 1. Fitting σx(z) and σy(z) to the astigmatic model of the PSF. Beads were used as calibration
markers which were moved in steps of 50 nm by a piezo stage.
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Supplementary Figure 2
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Supplementary Figure 2. Simultaneous fits to x, y, z, the emission and background rates synthetic data. Shown is
only the precision in z. The reported values of the CRLB of the algorithm are shown as circles whereas the found
standard deviation is indicated with crosses.
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Supplementary Figure 3
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Supplementary Figure 3. The standard deviation of found z-positions. Found standard deviations do not match that
reported from CRLB calculations because of aberrations present in experimental images that are not accounted for in
the imaging model.
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Supplementary Figure 4
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Supplementary Figure 4. Experimental bead data. Estimated z-positions versus piezo stage z position. The line has
slope one.
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Supplementary Figure 5

Supplementary Figure 5. Example images of simulated single molecules with emission and background rates (in
photons) that corresponds with the σPSF /2 border. Here the iterative method is still able to both estimate the CRLB
and find the position with CRLB accuracy. We show a 7×7 area with σPSF = 1. From left to right: background rates
0, 1 and 10. The shown photon counts are 10, 30 and 50.
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Supplementary Figure 6
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Supplementary Figure 6. Localization Accuracy versus Fit Region Size. The best localization accuracy is calculated
using the CRLB and compared to the standard deviation of x-position error in simulated data stacks for I0 = 1000 and
bg = 0. The improvement of localization accuracy diminishes beyond a linear box size of (2× 3σ + 1).
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Supplementary Figure 7
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Supplementary Figure 7. Convergence of the Iterative Method. The convergence of position (red) intensity (green)
and background rate (blue) to known, correct values are shown. Calculation were made using σPSF = 3 and a square
fitting region of linear size and 2 × 3σPSF + 1 = 19, which represents the slowest convergence of any combination
of σPSF and box size used.
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Supplementary Figure 8
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Supplementary Figure 8. Analysis of Single Molecule Experiments. The standard deviation of the x-positions found
in repeated measurements of single, immobilized Cy5 molecules (green) are compared with the average accuracy
calculated frame by frame using the CRLB (red). Found background rates (not shown) vary between single molecules
giving a range of possible localization accuracy values for each intensity.
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Supplementary Table 1

Processor Total Time Segmentation ROI collection Fitting Reconstruction
104 frames, 105 localizations

GPU 8.8 s 90 % 1 % 8.5 % 0.5 %
CPU 41 s 19.4 % 0.2 % 80.3 % 0.1 %

104 frames, 106 localizations
GPU 14 s 57.8 % 2.7 % 38.9 % 0.6 %
CPU 300 s 2.8 % 0.1 % 97 % 0.1 %

Supplementary Table 1. Comparison of total processing time for 10,000 frames of 128x128 pixels. Fitting corre-
sponds to σPSF=1 and 7×7 pixel fitting areas.
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Supplementary Note

The Image Formation Model

In the paraxial limit, the microscope point spread function (PSF) can be taken as the Airy pattern PSF(r) = J1(αr)
2

(αr)2 ,
where α = 2πNA

λ and J1 is the Bessel function of first kind. However, in fluorescence microscopy, objective lenses
with numerical apertures (NAs) of 1.2 or greater are most often used when imaging single fluorescent molecules in
order to collect as many emitted photons as possible; the collection efficiency is ∝ NA2. A proper calculation of
PSFs for these high NA objectives must include vectorial effects, aberrations in the optical system and apodization in
the objective lens [1, 2]. In lieu of such a detailed measurement and description of the PSF, often a two-dimensional
Gaussian shape is used as a compact and good expression of the PSF [3]. We use the two-dimensional Gaussian
approximation of the PSF to greatly simplify the proceeding analysis. This also holds for extension to 3D confocal
laser scanning PSFs [3]. The simplified form of the PSF is then

PSF(x, y) =
1

2πσ2
e

−(x−θx)2−(y−θy)2

2σ2 , (1)

where θx,y is the position of the emitter. PSF approximations also often neglect the finite size of the detector pixels.
In this work, the imaging model, denoted by µk(x, y), will always include the integration over finite pixels which is
given by:

µk(x, y) = θI0

∫
Ak

PSF(u, v)dudv + θbg , (2)

where µk(x, y) denotes the expected value in the kth pixel, θbg the expected background count, θI0 the expected
photon count and the integral is over the finite area Ak of the kth pixel, which is centered at (x, y). The Gaussian
approximation allows the results to be expressed in terms of error functions (which simplify the implementation as
they are supported in CUDA [4]). If we assume uniform pixels with unit size, the imaging model is given as:

µk(x, y) = θI0∆Ex(x, y)∆Ey(x, y) + θbg , (3)

where the expressions

∆Ex(x, y) ≡ 1

2
erf

(
x− θx + 1

2

2σ2

)
− 1

2
erf

(
x− θx − 1

2

2σ2

)
, (4a)

∆Ey(x, y) ≡ 1

2
erf

(
y − θy + 1

2

2σ2

)
− 1

2
erf

(
y − θy − 1

2

2σ2

)
, (4b)

are used to shorten notation. The Gaussian standard deviation, σ, is determined in practice by fitting to images of
small beads or single molecules under the operating conditions of the microscope. It can also be computed directly
from a theoretical PSF and its FHWM [3]. Eq. 3 will be used as the imaging model for the parameter estimation in the
following.

Cramér Rao Lower Bound
The Cramér Rao Lower Bound (CRLB) is the limiting lower bound of the variance for any unbiased parameter esti-
mator [5]. The general expression for the CRLB is given by the inverse of the Fisher information matrix

var(θ̂) ≥ I(θ)−1 , (5)

where var(θ̂) is the variance of an estimator and I(θ) is the Fisher information matrix. The equal sign is the minimum
of that estimation and is referred to as the CRLB.
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The Fisher Information Matrix for the imaging model µ

The elements of the Fisher information matrix are given by the expectation of the log-likelihood:

Iij(θ) = E

[
∂ ln(L(~x|θ))

∂θi

∂ ln(L(~x|θ))
∂θj

]
, (6)

where θ is the set of parameters being estimated θ = [θ1...θN ] and L(~x|θ) is the likelihood of the data set ~x given the
model generated by θ. Here the parameters are θ = [θx, θy, θI0 , θbg]. For a Poisson process the likelihood is given by

L(~x|θ) =
∏
k

µk(x, y)xke−µk(x,y)

xk!
. (7)

Using Eq. 6, Eq. 7 and the Stirling approximation (lnn! ≈ n lnn− n for large n) it is straightforward to show that

Iij(θ) = E

[∑
k

(xk − µk(x, y))2
1

µk(x, y)2
∂µk(x, y)

∂θi

∂µk(x, y)

∂θj

]
. (8)

Using the fact that (xk − µk(x, y))2 is the variance and equal to the expected value for a Poisson process, we obtain

Iij(θ) =
∑
k

1

µk(x, y)

∂µk(x, y)

∂θi

∂µk(x, y)

∂θj
. (9)

The partial derivatives with respect to the parameters are given by

∂µk(x, y)

∂θx
=

θI0
2σ2

∫
Ak

(θx − u)PSF(u, v)dudv (10a)

∂µk(x, y)

∂θy
=

θI0
2σ2

∫
Ak

(θy − v)PSF(u, v)dudv (10b)

∂µk(x, y)

∂θI0
=

∫
Ak

PSF(u, v)dudv (10c)

∂µk(x, y)

∂θbg
= 1 , (10d)

which upon performing the integration become

∂µk(x, y)

∂θx
=

θI0√
2πσ

(
e

−(xk−θx− 1
2
)2

2σ2 − e
−(xk−θx+1

2
)2

2σ2

)
∆Ey(x, y) (11a)

∂µk(x, y)

∂θy
=

θI0√
2πσ

(
e

−(yk−θy− 1
2
)2

2σ2 − e
−(yk−θy+1

2
)2

2σ2

)
∆Ex(x, y) (11b)

∂µk(x, y)

∂θI0
= ∆Ex(x, y)∆Ey(x, y) (11c)

∂µk(x, y)

∂θbg
= 1 . (11d)

Note that Eq. 9 is general, whereas the Gaussian PSF model allows the simple expressions in Eqs. 10 and 11. Simul-
taneous fitting of the position, intensity and background leads to off-diagonal elements in I(θ). The CRLBs for the
estimation of θ are equal to the diagonal elements of the matrix inversion of I(θ), i.e. var(θi) = (I−1)ii.
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Iterative Method
We employ essentially a Newton-Raphson method [6] to find the parameters θ that maximize ln(L(~x|θ)). This is
equal to the maximum likelihood estimate of the parameters θML = arg max

θ
L(~x|θ). The derivatives required for the

iterative updates are calculated in a straightforward manner from Eq. 7

∂ ln(L(~x|θ))
∂θi

=
∑
k

∂µk(x, y)

∂θi

(
xk

µk(x, y)
− 1

)
. (12)

Given an adequate guess of starting parameters, the parameters are updated according to:

θi → θi+

[∑
k

∂µk(x, y)

∂θi
(

xk
µk(x, y)

− 1)

]
×

[∑
k

∂2µk(x, y)

∂θ2i
(

xk
µk(x, y)

− 1)− ∂µk(x, y)

∂θi

2
xk

µk(x, y)2

]−1

.

(13)

The first derivatives are given in the previous section, (see Eqs 11) and the second derivatives are given by

∂2µk(x, y)

∂θ2x
=

θI0√
2πσ3

(
(xk − θx −

1

2
)e

−(xk−θx− 1
2
)2

2σ2 − (xk − θx +
1

2
)e

−(xk−θx+1
2
)2

2σ2

)
∆Ey(x, y) , (14a)

∂2µk(x, y)

∂θ2y
=

θI0√
2πσ3

(
(yk − θy −

1

2
)e

−(yk−θy− 1
2
)2

2σ2 − (yk − θy +
1

2
)e

−(yk−θy+1
2
)2

2σ2

)
∆Ex(x, y) , (14b)

∂2µk(x, y)

∂θ2θI0
=
∂2µk(x, y)

∂θ2bg
= 0 . (14c)

Extension to 3D Astigmatic Imaging
Following Holtzer [7] and using σ0 as usual the PSF near focus can be described by a 2D Gaussian with a z-dependent
standard deviation

σ(z) = σ0

√
1 +

z2

d2
+A

z3

d2
+B

z4

d2
, (15)

where σ0 is the in focus standard deviation, d is the depth of focus (a constant for a particular objective), A and B are
empirical constants (B ≈ 0 for our experiments, see Results). Introducing an elliptical lens in the beam path splits the
focal plane into two perpendicular focal planes at different depth giving an asymmetric PSF. The form of the PSF on
the detector is then approximated by

PSF(x, y) =
1

2πσx(θz)σy(θz)
e
− (x−θx)2

2σx(θz)2
− (y−θy)2

2σy(θz)2 , (16)

where θx,y,z is the position of the emitter. Half way between the two focal planes we have (assuming Gaussian optics
at the disk of least confusion) σx = σy and σx, σy ≥ σ0; here we define z = 0. Focal planes for each direction are
above and below z = 0. Assuming the x-direction is focused above and using Eq. 15, z → z − γ for the x-direction,
z → z + γ for the y-direction

σx(z) = σ0x

√
1 +

(z − γ)2

d2
+Ax

(z − γ)3

d2
+Bx

(z − γ)4

d2
, (17a)

σy(z) = σ0y

√
1 +

(z + γ)2

d2
+Ay

(z + γ)3

d2
+By

(z + γ)4

d2
. (17b)
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The x, y-directions have the same form so we continue only with y. Eq. 13 requires the first and second derivatives
∂µ(xk,yk)

∂θz
and ∂2µ(xk,yk)

∂θ2z
to fit the z position. These are calculated from

∂µ(xk, yk)

∂θz
=

∂µ

∂σx

∂σx
∂θz

+
∂µ

∂σy

∂σy
∂θz

, (18a)

∂2µ(xk, yk)

∂θ2z
=
∂2µ

∂σ2
x

(
∂σx
∂θz

)2

+
∂µ

∂σx

∂2σx
∂θ2z

(18b)

+
∂2µ

∂σ2
y

(
∂σy
∂θz

)2

+
∂µ

∂σy

∂2σy
∂θ2z

. (18c)

The first and second derivatives σy to θz are given by

∂σy
∂θz

=
σ0( 2z

d2 +A 3z2

d2 +B 4z3

d2 )

2
√

1 + z2

d2 +A z3

d2 +B z4

d2

, (19a)

∂2σy
∂θ2z

=
σ0( 2

d2 +A 6z
d2 +B 12z2

d2 )

2
√

1 + z2

d2 +A z3

d2 +B z4

d2

−
σ0( 2z

d2 +A 3z2

d2 +B 4z3

d2 )2

4(1 + z2

d2 +A z3

d2 +B z4

d2 )
3
2

. (19b)

It does not matter for the result of the differentiation if the substitution z → z ± γ is done before or after, so ∂2σx,y
∂θ2z

is
obtained by substituting z → z ± γ in the derivatives Eqs. 19b. Using the expressions

Gnm
x (xk) ≡ 1√

2πσx(θz)
n

(
(xk − θx −

1

2
)me

−(xk−θx− 1
2
)2

2σx(θz)2 − (xk − θy +
1

2
)me

−(xk−θy+1
2
)2

2σx(θz)2

)
(20a)

Gnm
y (yk) ≡ 1√

2πσy(θz)
n

(
(yk − θy −

1

2
)me

−(yk−θy− 1
2
)2

2σy(θz)2 − (yk − θy +
1

2
)me

−(yk−θy+1
2
)2

2σy(θz)2

)
(20b)

to shorten notation, we obtain for the derivatives of µ to σy

∂µ(xk, yk)

∂σy
= θI0∆Ex(xk)G21

y (yk) , (21a)

∂2µ(xk, yk)

∂σ2
y

= θI0∆Ex(xk)(G53
y (yk)− 2G31

y (yk)) . (21b)

Supplementary Data

Performance on Synthetic Data Sets
Supplementary Fig. 6 shows the CRLB determined best accuracy as a function of a linear box size as well as the
results from GPU fits. The results suggest a ’rule of thumb’ fitting region size of 2× 3σ+ 1, which gives near optimal
results while keeping computational time down and reducing the probability of including nearby emitters in the fitted
region. All further results are shown with fits using this box size. This limit is a direct consequence of the fact that 99%
of the volume of a Gaussian is enclosed within 3σ. Increasing the box size effectively only includes more background.

Supplementary Fig. 7 shows the convergence of the iterative algorithm for x-position, background and fluo-
rophore intensity. The position estimate converges quickly, whereas the background and fluorophore rates, which are
required for calculating the localization accuracy require nearly 10 iterations. The shown example is for σPSF = 3
and a box size of 19, which was found to require the most iterations for convergence of all parameter combinations. All
subsequent analyses shown were the result of 10 iterations, independent of σPSF or fit region size. In Supplementary
Fig. 5 we show example images of simulated single molecules with emission and background rates (in photons) that
corresponds with the σPSF /2 as discussed in the main text. We find that in all conditions, when the reported CRLB is
less than σPSF /2 (here 0.5), the reported CRLB matches the theoretical position, and the routine achieves the CRLB.
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Performance on Experimental Single Molecule Data
2D Imaging

Imaging of single Cy5 fluorescent molecules was used to demonstrate the performance of the iterative method under
typical single molecule imaging conditions. Since the position, intensity and background rate were not known a-
priori, we analyzed a set of single molecules that had a steady emission rate over at least one hundred continuous
frames. The found standard deviation of the x-position was compared to the mean value of the reported x-dimension
localization accuracy, which is calculated for each image that made up a single particle ’trajectory’. As can be seen
in Supplementary Fig. 8, the reported accuracy gives a good estimate of the actual localization accuracy over a wide
range of fluorophore intensities. The results also demonstrate that the Gaussian PSF and pure Poisson noise model
with neglection of read noise are appropriate approximations for single molecule localization in two dimensions.

3D Astigmatic Imaging

With the found fit parameters on the calibration set (Methods, Astigmatic Imaging Section) a synthetic data series
was generated using 1000 expected photons per frame for the fluorophore, and one expected background count per
pixel per frame. 1000 frames for each z-position were generated and analyzed. Supplementary Fig. 2 shows the
fitting result of the iterative algorithm, which performs a simultaneous fit to x, y, z, and the emission and background
rates. The z-position fits both achieve the CRLB value and the CRLB is correctly reported. For fits that include
z-position estimates, 20 iterations of the routine were required for convergence.

An analysis of the experimental bead data is shown in Supplementary Fig. 3 and 4. In contrast to fitting simulated
3D data, and all 2D data, the fitting of experimental data does not reach the CRLB. This is attributed to the fact for the
CRLB to be justified, the model must be correct.

In 3D imaging, the out-of-focus images are more prone to shape changes of the PSF due to aberrations such as
coma and spherical aberration. Therefore, these images do not exactly match the simple astigmatic model. We note,
however, that our algorithm does perform a fast MLE given this model, and, as shown with analysis of simulated
data, if aberrations can by minimized or eliminated, our routine will also correctly report z-position accuracies. Small
amounts of spherical aberration already give rise to a small asymmetry between the two focal lines. Misalignment of
the cylinder lens by ∆x with respect to optical axis of the tube lens has the effect of a shift of the center of mass of the
spot and will result in two different σ0 fits for x and y as observed in Supplementary Fig. 1. The focal line along the
cylinder axis is then displaced by ∼ (ftub/fcyl)∆x = (180/500)∆x = 0.36∆x which translates to a shift of ∼ 1/3
pixel at a ∆x = 10µm and a CCD pixel size of 10 µm.

If aberrations cannot be sufficiently reduced and alignment manually adjusted by a micrometer screw, optimal
position precision may require fitting to a measured PSF [8], at the expense of speed.
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